224

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Liu, D., Chen, X., Liu, J., Ye, J., & Guo, Z., (2012). The rice ERF transcription factor

OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J.

Exp. Bot., 63, 3899–3911.

Liu, H., Yang, Y., Liu, D., Wang, X., & Zhang, L., (2020). Transcription factor TabHLH49

positively regulates dehydrin WZY2 gene expression and enhances drought stress tolerance

in wheat. BMC Plant Biology, 20, 259.

Liu, L., Zhang, Z., Dong, J., & Wang, T., (2016). Overexpression of MtWRKY76 increases

both salt and drought tolerance in Medicago truncatula. Environ. Exp. Bot., 123, 50–58.

Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki,

K., (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA

binding domain separate two cellular signal transduction pathways in drought and low­

temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10,

1391–1406.

Liu, R., Liu, M., Liu, J., Chen, Y., Chen, Y., & Lu, C., (2010). Heterologus expression of a

Ammopiptanthus mongolicus late embryogenesis abundant protein gene (AmLEA) enhances

Escherichia coli viability under cold and heat stress. Plant Growth Regul., 60, 163–168.

Liu, X., Song, Y., Xing, F., Wang, N., Wen, F., & Zhu, C., (2015). GhWRKY25, a group I

WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in

transgenic Nicotiana benthamiana. Protoplasma, 253, 1265–1281.

Liu, Y., Ji, X., Nie, X., Qu, M., Zheng, L., Tan, Z., Zhao, H., et al., (2015). Arabidopsis

AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by

binding to their E-box and GCG-box motifs. New Phytol., 207, 692–709.

Liu, Y., Yu, X., Liu, S., Peng, H., Mijiti, A., Wang, Z., Zhang, H., & Ma, H., (2017). A chickpea

NAC-type transcription factor, CarNAC6, confers enhanced dehydration tolerance in

Arabidopsis. Plant Mol. Biol. Rep., 35, 83–96.

Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., Little, B. B., Rejesus, R. M., &

Hammer, G. L., (2014). Greater sensitivity to drought accompanies maize yield increase in

the U.S. Midwest. Science, 344, 516–519.

Lowder, L. G., Paul, J. W., Baltes, N. J., Voytas, D. F., Zhang, Y., Zhang, D., Tang, X., et al.,

(2015). A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional

regulation. Plant Physiol., 169, 971–985.

Lowder, L. G., Zhou, J., Zhang, Y., Malzahn, A., Zhong, Z., Hsieh, T. F., Voytas, D. F., et al.,

(2017). Robust transcriptional activation in plants using multiplexed CRISPR-Act2. 0 and

mTALE- act systems. Mol. Plant, 11, 245-256.

Lu, G., Gao, C., Zheng, X., & Han, B., (2009). Identification of OsbZIP72 as a positive

regulator of ABA response and drought tolerance in rice. Planta, 229, 605-615.

Luo, M., Liu, X., Singh, P., Cui, Y., Zimmerliu, L., & Wu, K., (2012). Chromatin modifications

and remodeling in plant abiotic stress responses. Biochim. Biophys. Acta, 1819, 129–136.

Luo, X., Li, C., He, X., Zhang, X., & Zhu, L. F., (2019). ABA signaling is negatively regulated

by GbWRKY1 through JAZ1 and ABI1 to affect salt and drought tolerance. Plant Cell Rep.,

39, 181–194.

Ma, J., Gao, X., Liu, Q., Shao, Y., Zhang, D., Jiang, L., & Li, C., (2017). Overexpression of

TaWRKY146 increases drought tolerance through inducing stomatal closure in Arabidopsis

thaliana. Front. Plant Sci., 8, 2036.

Ma, J., Wang, L. Y., Dai, J. X., Wang, Y., & Lin, D., (2021). The NAC-type transcription factor

CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana. BMC

Plant Biol., 21, 11.